

Distribution Selection

CIVL 7012/8012

Possible Outcomes

		Truth Situation		
		Two Distributions Identical	Two Distributions Different	
Predicted Situation	No evidence of difference (Fail to Reject Hypothesis)	J	Type-II error	
	Evidence of difference (Reject Hypothesis)	Type-I Error	J	

Hypothesis

- Fail to Reject Hypothesis
 - "There is no evidence of a statistical difference between the two distributions and the measured distribution could be identical to the mathematical distribution"
- Reject Hypothesis
 - "There is evidence of a statistical difference between the two distributions and it is unlikely that the measured distribution is identical to the mathematical distribution"

Error

- Type I error
 - When prediction shows that the two distributions are different, but in truth situation two distributions are identical
- Type-II error
 - When prediction shows that two distributions are identical but in truth situation two distributions are different

Chi-square Test

$$\chi_{calc}^{2} = \sum_{i=1}^{I} \frac{(f_{0} - f_{t})^{2}}{f_{t}}$$

where.,

 χ^2_{calc} -> Calculated chi-square value

 f_0 -> Observed number or frequency of observations in time headway interval i

 f_t -> Theoretical number or frequency of observations in time headway interval I

i-> Any time headway interval

I-> Number of time headway intervals

Accept or Reject Hypothesis

 $\chi^2_{calc} \ge \chi^2_{table}$ -> Reject Null hypothesis

How to find Chi-square (Table)

$$n = (I - 1) - p$$

Where,

I -> Number of time headway intervals being compared

1 = constant

p= Number of parameters estimated in defining the

Why 1 is subtracted

- A constant "1" is subtracted from the number of time headway groups since the total frequency of the two distributions are set equal
- Therefore, the theoretical frequency of the last group is not dependent on I-1 frequencies

Number of parameters needed

Distribution	Parameters (p)
Measured	0
Negative Exponential	$1 \qquad (\overline{t})$
Shifted Negative Exponential	2 (\overline{t}, α)
Normal	$2 \qquad (\overline{t},s)$
Pearson Type-III	2 (K,λ)
Composite	4

 Consider speed data is collected and the following data is obtained.

Let us calculate descriptive statistics of the

data

$$\overline{\mu} = \frac{\sum_{i=1}^{g} f_i \mu_i}{N}$$

$$s^{2} = \frac{\sum_{i=1}^{g} f_{i}(\mu_{i})^{2} - \frac{1}{N} \left(\sum_{i=1}^{g} f_{i} \mu_{i}\right)^{2}}{N - 1}$$

				$f_i \mu_i$	$f_i(\mu_i)^2$
		Cumu	lative		Ji(µi)
ui	fi	fi	%		
30	-	-		-	-
31	-	0	0	-	-
32	0	0	0	0	0
33	1	1	0.5	33	1,089
34	2	3	1.5	68	2,312
35	1	4	2	35	1,225
36	1	5	2.5	36	1,296
37	-	5	2.5		
38	1	6	3	38	1,444
39	1	7	3.5	39	1,521
40	2	9	4.5	80	3,200
41	1	10	5	41	1,681
42	5	15	7.5	210	8,820
43	4	19	9.5	172	7,396
44	1	20	10	44	1,936
45	7	27	13.5	315	14,175
46	4	31	15.5	184	8,464
47	8	39	19.5	376	17,672
48	8	47	23.5	384	18,432
49	15	62	31	735	36,015
50 51	8	70 78	35 39	400 408	20,000
52	10	88	44	520	20,808 27,040
53	23	111	55.5	1,219	64,607
54	15	126	63	810	43,740
55	16	142	71	880	48,400
56	9	151	75.5	504	28,224
57	14	165	82.5	798	45,486
58	6	171	85.5	348	20,184
59	3	174	87	177	10,443
60	9	183	91.5	540	32,400
61	3	186	93	183	11,163
62	6	192	96	372	23,064
63	3	195	97.5	189	11,907
64	3	198	99	192	12,288
65	2	200	100	130	8,450
66	-	200	100	-	-
67	-	200	100	-	-
68	-	200	100	-	-
69	-	200	100	-	-
70	-	200	100	-	-
Sum	200			10,460	554,882

- Mean = 52.3
- Median = 49
- Mode = 53
- Variance = 39.13
- Standard deviation = 6.27
- Range = 32 (33-65)

Frequency plot

Cumulative Frequency Plot

How to find interval width

$$I = \frac{\text{Range}}{1 + (3.322) \log N}$$

where I = size of the class interval

Range = total range (largest observed value minus smallest observed value)

N = number of observations

Normal Distribution

Hypothesis Test

Class Interval Limit	f0	t f	0-ft	(f0-ft)^2	(f0-ft)^2]/ft
	4	0.766076			
35.5	5 2	2.082896			
38.5	i 4	5.798655	1.352373	1.82891395	0.315403
41.5	10	12.92045	-2.92045	8.52901878	0.660118
44.5	19	23.04361	-4.04361	16.35078051	0.709558
47.5	31	32.89801	-1.89801	3.602447455	0.109504
50.5	41	37.5967	3.403296	11.5824244	0.30807
53.5	40	34.39509	5.604908	31.41498944	0.913357
56.5	23	25.18872	-2.18872	4.790480419	0.190184
59.5	18	14.76609	3.233911	10.4581796	0.708257
62.5	8	10.5437	-2.5437	6.470418735	0.613676
			!	Sum_Calculated	4.528126
				Table	12.59159
					Fail to
					reject Null
				Conclusion	Hypothesis